book_icon

AWS anuncia disponibilidade geral do Amazon DevOps Guru

Novo serviço de operações baseados em Machine Learning fornece recomendações personalizadas para melhorar a disponibilidade de aplicações

AWS anuncia disponibilidade geral do Amazon DevOps Guru

A Amazon Web Services, AWS, um braço da Amazon.com, anuncia a disponibilidade geral do Amazon DevOps Guru, um serviço de operações totalmente gerenciado que utiliza Aprendizado de Máquina para facilitar a melhoria da disponibilidade de aplicativos aos desenvolvedores, detectando automaticamente problemas operacionais e recomendando ações específicas para a remediação. Com base nos anos de excelência operacional da Amazon.com e da AWS, o Amazon DevOps Guru aplica Aprendizado de Máquina para analisar automaticamente dados como métricas de aplicativos, logs, eventos e rastreamentos de comportamentos que se desviam dos padrões operacionais normais.

Quando o Amazon DevOps Guru identifica comportamentos anômalos de aplicativos que podem causar possíveis paralisações ou interrupções de serviço, alerta os desenvolvedores com detalhes de problemas para ajudá-los a entender rapidamente o potencial impacto e as prováveis causas do problema, com recomendações específicas para solucionar a questão. Os desenvolvedores podem usar as sugestões do Amazon DevOps Guru para reduzir o tempo de resolução quando os problemas surgirem e melhorar a disponibilidade do aplicativo, sem necessidade de configuração manual ou conhecimento profundo em Aprendizado de Máquina. Não há custos ou compromissos iniciais com o Amazon DevOps Guru e os clientes pagam apenas pelos dados analisados. Para aplicar o Amazon DevOps Guru, visite o link descrito ao final do texto. 

Os desenvolvedores podem usar as sugestões do Amazon DevOps Guru para reduzir o tempo de resolução quando os problemas surgirem e melhorar a disponibilidade do aplicativo, sem necessidade de configuração manual ou conhecimento profundo em Aprendizado de Máquina

À medida que mais organizações se movem para arquiteturas de implantação de aplicativos e microsserviços baseadas em Nuvem para escalar seus negócios, as aplicações se tornaram cada vez mais distribuídas, e os desenvolvedores precisam de práticas mais automatizadas para manter a disponibilidade de aplicativos e reduzir o tempo e o esforço gasto para detectar, apurar e resolver problemas operacionais. A inatividade da aplicação causada por alterações de código ou configurações defeituosas, clusters de contêineres desequilibrados ou esgotamento de recursos, por exemplo: CPU, memória, disco, inevitavelmente prejudica a experiência do cliente e resulta em perda de receita.

Empresas investem uma quantidade considerável de recursos, tempo e dinheiro para implementar ferramentas de monitoramento, muitas vezes gerenciadas separadamente. Em seguida, têm que desenvolver e manter alertas personalizados para problemas comuns, como picos de erros de balanceador de carga ou quedas nas taxas de solicitação de aplicativos.

Definir limites para identificar e alertar quando os recursos do aplicativo estão se comportando de forma anormal é difícil; envolve configuração manual e requer limites que devem ser continuamente atualizados à medida que o uso do aplicativo muda, por exemplo, um número extraordinariamente grande de solicitações durante uma promoção de vendas. Se um limite for definido como muito alto, os desenvolvedores não conseguem identificar alarmes até que o desempenho operacional seja severamente afetado. Quando um limite é definido como muito baixo, os desenvolvedores recebem muitos falsos positivos, que são propensos a ignorar.

Mesmo quando são alertados sobre um possível problema operacional, o processo de identificação da causa ainda pode ser difícil. Utilizando ferramentas existentes, os desenvolvedores muitas vezes têm dificuldade em triangular a raiz de um problema operacional a partir de gráficos e alarmes, e, mesmo quando são capazes de encontrar, muitas vezes não têm as informações adequadas para corrigi-la. Cada tentativa de solução de problemas é um começo incerto onde as equipes devem passar horas ou dias identificando problemas, um trabalho demorado e tedioso que diminui o tempo para resolver uma falha operacional e pode prolongar interrupções na aplicação.

Os modelos de Aprendizado de Máquina do Amazon DevOps Guru alavancam mais de 20 anos de experiência operacional em construção, dimensionamento e manutenção de aplicações altamente disponíveis para Amazon.com. Isso dá ao serviço a capacidade de detectar automaticamente problemas operacionais, fornecer contexto sobre recursos envolvidos e eventos relacionados e recomendar ações de remediação. Com apenas alguns cliques no console Amazon DevOps Guru, métricas históricas de aplicação e infraestrutura como latência, taxas de erro e taxas de solicitação de recursos são automaticamente ingeridas a partir dos aplicativos AWS do usuário e analisadas para estabelecer limites operacionais normais. O Amazon DevOps Guru usa, então, um modelo pré-treinado para identificar desvios dessa linha de base estabelecida.

Com apenas alguns cliques no console Amazon DevOps Guru, métricas históricas de aplicação e infraestrutura como latência, taxas de erro e taxas de solicitação de recursos são automaticamente ingeridas a partir dos aplicativos AWS do usuário

Quando o serviço analisa dados de sistemas e aplicativos para detectar anomalias automaticamente, também agrupa esses dados em insights operacionais que incluem métricas anômalas, visualizações do comportamento do aplicativo ao longo do tempo e recomendações sobre ações — todas facilmente visualizadas no console Amazon DevOps Guru. O serviço também se correlaciona e agrupa métricas de aplicativos e infraestrutura relacionadas (por exemplo, picos de latência de aplicativos da Web, falta de espaço em disco, implementações de código ruins etc.) para reduzir alarmes redundantes e ajudar a concentrar os usuários em problemas de alta gravidade. Os clientes podem ver históricos de alterações de configuração e eventos de implantação, juntamente com a atividade do sistema e do usuário, para gerar uma lista priorizável de causas prováveis para um problema operacional por um painel no console Amazon DevOps Guru.

Para ajudar os clientes a resolver problemas rapidamente, o Amazon DevOps Guru fornece recomendações inteligentes com etapas de soluções e integra-se ao AWS Systems Manager para ferramentas de runbook e colaboração, dando aos clientes a capacidade de manter aplicações de forma mais eficaz e gerenciar a infraestrutura para suas implantações. Por exemplo, quando um aplicativo de análise usando o Amazon Relational Database Service, RDS, serviço de banco de dados relacional da Amazon, começa a exibir latências degradadas, o Amazon DevOps Guru detecta a alteração analisando automaticamente as métricas relevantes em toda a pilha de aplicações, identifica a causa subjacente, como o aumento do número de instâncias de Computação simultâneas escrevendo para RDS, e fornece uma recomendação para resolver o problema.

“Os clientes continuam pedindo à AWS mais serviços que lhes permitam se beneficiar de nossas décadas de excelência operacional e experiência em aprimorar a disponibilidade da aplicação que executa a Amazon.com”, comenta Swami Sivasubramanian, vice-presidente da Amazon Machine Learning na AWS. “Com o Amazon DevOps Guru, pegamos essa expertise e construímos modelos especializados de Machine Learning para detectar, solucionar e prevenir problemas operacionais muito antes de impactarem os clientes, sem lidar com a incerteza que surge a cada nova ocorrência . O Amazon DevOps Guru fornece aos clientes os benefícios das práticas operacionais recomendadas que aprendemos executando na Amazon.com, e projetamos o serviço de uma maneira tão simples que ligá-lo seria uma escolha fácil para todo cliente da AWS”.

Com alguns cliques no Console de Gerenciamento AWS, os clientes podem habilitar o Amazon DevOps Guru a começar a analisar a atividade da conta e da aplicação em poucos minutos para fornecer insights operacionais. O Amazon DevOps Guru oferece aos clientes uma experiência de console único para visualizar seus dados operacionais, resumindo dados relevantes em várias fontes, por exemplo, AWS CloudTrail, Amazon CloudWatch, AWS Config, AWS CloudFormation, AWS X-Ray, e reduz a necessidade de alternar entre várias ferramentas. Os clientes também podem visualizar eventos operacionais correlacionados e dados contextuais.

Além disso, o serviço suporta pontos finais de API por meio do AWS SDK, facilitando que parceiros e clientes da Amazon Partner Network, APN, integrem o Amazon DevOps Guru em suas soluções existentes para bilhetagem, paginação e notificação automática de engenheiros para problemas de alta gravidade. PagerDuty e Atlassian estão entre os parceiros da AWS que integraram o Amazon DevOps Guru em suas plataformas de monitoramento de operações e gerenciamento de incidentes. Os clientes que usam suas soluções agora podem se beneficiar de insights operacionais fornecidos pelo serviço.

O Amazon DevOps Guru está disponível hoje em regiões dos Estados Unidos, Cingapura, Sydney, Tóquio, Frankfurt, Irlanda e Estocolmo, com disponibilidade prevista para outras regiões nos próximos meses.

Juntamente com o Amazon Code Guru, o Amazon DevOps Guru oferece aos clientes os benefícios automatizados de Aprendizado de Máquin  para seus dados operacionais, fazendo com que desenvolvedores possam melhorar com mais facilidade a disponibilidade e a confiabilidade das aplicações.

 

Serviço
aws.amazon.com/devops-guru

Amazon Code Guru

Amazon DevOps Guru

Amazon Web Services

AWS

AWS SDK

O seu endereço de e-mail não será publicado. Campos obrigatórios são marcados com *


As opiniões dos artigos/colunistas aqui publicados refletem exclusivamente a posição de seu autor, não caracterizando endosso, recomendação ou favorecimento por parte da Infor Channel ou qualquer outros envolvidos na publicação. Todos os direitos reservados. É proibida qualquer forma de reutilização, distribuição, reprodução ou publicação parcial ou total deste conteúdo sem prévia autorização da Infor Channel.
Revista Digital
Edição do mês

Leia nesta edição:

Leia nessa edição sobre tecnologia

ENCARTE - ESPECIAL DISTRIBUIÇÃO

Prêmio Excelência em Distribuição, e listagem de distribuidores de TIC

Leia nessa edição sobre carreira

ANÁLISES

Evoluções digitais

Leia nessa edição sobre setorial | saúde

TECNOLOGIA

Arquitetura descentralizada

Esta é para você leitor da Revista Digital:

Leia nessa edição sobre sustentabilidade

QUALIFICAÇÃO

Na jornada do conhecimento

Junho| 2021 | #47 - Acesse:

Infor Channel Digital

Baixe o nosso aplicativo

Google Play
Apple Store

Agenda & Eventos

Cadastre seu Evento